Table II

	Expt'1	Theory (based on experimental a_0)	Theory (Born Repulsive term included)
$B_{\mathbf{o}}^{\mathbf{T}}$	77 kb*	82.36 kb	87.06 kb
B_{o}^{T}	3.904**	3.926	4.096
BoT''	-0.0696kb ⁻¹ **	-0.0461 kb ⁻¹	-0.0441kb ⁻¹

If, instead, we use the following two conditions

$$P=0=-\frac{1}{4\pi r_s^2} \frac{dE}{dr_s}$$

$$B_0 = \frac{1}{12\pi r_s} \frac{d^2E}{dr_s^2}$$

and the extrapolated 0°K value of B_o to determine the value of r_c and the equilibrium value of r_s , we obtain r_s =4.038, r_c =2.047. Again using eq. (4) and (5) to calculate B_o , B_o and B_o , we obtain the results shown in Table III.

In the previous calculation the Born repulsive energy due to ion-ion overlap was not considered. It would be interesting to see the effect of adding this term to the total energy. A Huggins-Mayer type expression for the Born repulsive energy

^{*} extrapolated 0°K value

^{** 195°}K value